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Fine structure in 14C cluster emission from 225Ac
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Abstract. A fine structure in the 14C decay of 225Ac is predicted quantitatively by accounting dynamical
aspects during the disintegration process. Transitions to the excited states of the daughter nucleus are
considered to be mainly directed by the Landau–Zener promotion mechanism in the region of avoided
crossing levels. The level scheme is evaluated with the superasymmetric two–center shell model. The half–
lives are computed considering the cluster decay as a superasymmetric fission process.

PACS. 23.70.+j Heavy-particle decay – 21.60.Cs Shell model – 21.60.Gx Cluster models – 24.75.+i
General properties of fission

1 Introduction

The cluster decay was predicted in 1980 [1] within a quan-
tum mechanical fragmentation theory and experimentally
evidenced in 1984 [2,3]. Few time later, a fine structure in
cluster emission was also anticipated [4–6]. Exploiting the
unique qualities of the SOLENO spectrometer, the Orsay
group discovered a fine structure in the energy spectrum
concerning the 14C decay from 223Ra [7,8], characterized
by a more intense branch to the first single–particle ex-
cited state of the daughter 209Pb. Theoretical investiga-
tions were effected emphasizing the similarity with the
same phenomenon observed in the alpha decay [9] of odd–
A reflection–asymmetric deformed nuclei [10–12]. By cal-
culating the overlaps between the 3

2

+ orbital of the un-
paired neutron in the ground state of the 223Ra and the
orbitals for a spherical shape (assumed to characterize the
daughter 209Pb), it was pointed out that the main com-
ponent is i11/2 with small admixtures from g9/2 and j15/2.
This result is quantitatively consistent with the favored
decay to the 11

2

+ state in 209Pb if the variations of the
Gamow factor between different channels are neglected.
In a more realistic way, calculations of hindrance factors
were performed within the one level R–matrix approxima-
tion [13,14]. The fine structure phenomenon was also an-
alyzed through models inspired from alpha decay theories
[15–17] or fission–like ones [18,19]. An extended overview
of these microscopic theories can be found in [20].

In a competitive way, the experimental result was
also explained appealing to the Landau–Zener promotion
mechanism, i.e., considering an enhancement of transition
probabilities of the unpaired nucleon during the disinte-
gration process in the avoided level crossing regions. The
role played by the Landau–Zener effect in cluster decays
was evidencied in [21,22] and, quantitatively, the theoret-

ical results display an excellent agreement with the ex-
perimental values. In this context, the same formalism is
exploited for the study of the 225Ac→14C+211Bi decay in
oder to predict quantitatively the fine structure charac-
teristics.

This system was chose because an experimental value
of the hindrance factor will provide spectroscopic informa-
tion about the controversial 225Ac nucleus [23]. Moreover,
with magnetic spectroscopy, Hussonnois hopes to be able
to measure the kinetic energy of the 14C accurately enough
to infer the levels of the 211Bi [24,25] in the near future.

2 Formalism

As in the previous work [21,22] the deformations of the
nuclei are neglected. To avoid the use of different least
action trajectories in the configuration space required by
each reaction channel, a simple nuclear shape parametriza-
tion, given only by the intersection of two spheres with
different radii, is used. So, the single degree of freedom
becomes the elongation R, denoting the distance between
the two centers of the fragments. The mass–asymmetry
is determined during the decay by using a constant value
of the emitted fragment radius. A normalized coordinate
of elongation Rn = (R − Ri)/(Rf − Ri) is also used,
where Ri = R0s − R2s characterizes the geometry at the
initial moment of the decay, given by two overlapping
tangent spheres, Rf = R1s + R2s denotes the elonga-
tion for the configuration of two external tangent spheres,
Ris = 1.16 A

1
3
i with i = 0, 1, 2, being the radii of the

parent, the daughter and the emitted nuclei considered
spherical, respectively.

The adiabatic levels are obtained with an improved
version of the superasymmetric two–center shell model
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(STCSM) [26], inspired from [27]. The Hamiltonian (in
cylindrical coordinates) is split into several parts which
are treated separately:

V (ρ, z, ϕ) = V0(ρ, z) + Vas(ρ, z) + Vn(ρ, z)+
VLs(ρ, z, ϕ) + VL2(ρ, z, ϕ)− Vc (1)

where V0(ρ, z) is the two–center potential which eigen-
vectors can be solved analytically, Vas(ρ, z) is the mass–
asymmetry term having the improved form described in
details in [22] and Vn(ρ, z), VLs(ρ, z, ϕ), VL2(ρ, z, ϕ), Vc are
correction terms related to the necking, to the spin-orbit
and L2 couplings and to the depth of the potential, re-
spectively. The description of these correction terms can
be found in [26]. The used values of the coupling con-
stants are determined in order to reproduce the real level
scheme and are κ=0.051851, κ1 =0.0547581, κ2=0.1345,
µ =0.6445597, µ1=0.5686 and µ2=1.16365. The depths of
the potentials are Vc=48.925, Vc1=49.0804 and Vc2=53.99.
The values of the coefficients κ, µ and Vc, entering in
the Hamiltonian are deduced for a spherical 225Ac by χ2–
fitting the single particle levels obtained with a realistic
Wood–Saxon potential [28] found in the neighboring of the
Fermi energy. The values which characterize the 211Bi–
coefficients are determined using the same fit procedure
applied to available experimental data [29]. Finally, the
values assigned to 14C are computed by meaning the cou-
pling constants determined for light nuclei as 15N, 13N and
13B using level schemes found in [30]. In general, three or
four spherical levels above and under the Fermi energy
were accounted and some inevitable minor differences be-
tween the energetic values of the levels obtained with our
modified oscillator model and the experimental reference
values arise. For example, the experimental value of the
first excited state of 211Bi is 0.404 MeV while from our mi-
croscopic level scheme, the theoretical value becomes 0.46
MeV. However, all the theoretical calculations are made
using as reference the theoretical level scheme, that means,
even the penetrabilities relative to the excited state are
calculated according with the single–particle differences in
energies deduced from the theoretical level scheme. Here,
the cutoff value of the major quantum number is chose
Nmax=10. In principle, the resulting level scheme keeps
the principal trends (number of avoided level crossings)
unchanged as long as the modifications of the two–centre
shell model parameters do not transform the succession
of the order of the levels. In Fig. 1, the energetic proton
level scheme is displayed as function of the elongation Rn.
The the single particle levels are labeled by their spec-
troscopic notations, on the left side, for the parent, and,
on the right side, for the daughter and the emitted nu-
cleus, in the first and second column, respectively. In the
following text, the superscript H is added for the heavy
fragment.

As evidenced in [23], to treat the reaction
225Ac→14C+211Bi, two assignments can be taken
into consideration concerning the unpaired proton with
spin Ω =3/2 [31] if the parent 225Ac is in ground state.
The first one [29] considers that the proton is located in
the orbit which emerges from the spherical subshell 1h9/2

while the second assent claims that the last unpaired
nucleon originates [32] from the 2f7/2 spherical orbital.
Let consider that in the Ac ground state, the unpaired
proton is located somewhere on the level emerging from
1h9/2, the system being characterized by a Rn included
in an interval large enough around zero to include the
possible deformations of the parent. An overview on
the level scheme presented in Fig. 1 reveals that this
first hypothesis leads to a very unfavorable energetic
configuration of the daughter after the disintegration,
the unpaired proton reaching adiabatically the state
1hH11/2, resulting a hole configuration. So, this proposed
assignment for the unpaired proton in the ground state
of the parent leads to a hindered process from energetic
conditions. Moreover, an excitation to the superior level
with same spin Ω =3/2, i.e., the level emerging from 2f7/2

is not allowed because of the non-existence of pronounced
avoided crossings between these levels during the decay.
The second hypothesis seems to be more realistic, leading
adiabatically to a final ground state configuration of the
unpaired nucleon in the 1hH9/2 spherical orbital. This
discussion persuades us to consider that 225Ac has the
spin 3

2 emerging from 2f7/2 as considered in [32]. In the
following, the fine structure of the 14C radioactivity can
be understood by an enhanced transition probability of
the unpaired neutron from the adiabatic level with Ω = 3

2
emerging from 2f7/2, to the superior adiabatic levels with
the same spin projection emerging from 1i13/2 and 2f5/2,
according with the Landau–Zener effect.

The realistic two–center level diagram presented before
provides an instrument to study the role of individual or-
bitals during the disintegration process in a similar way
as the study of nucleus–nucleus collision [33]. The molecu-
lar levels are functions of the internuclear distance. Levels
with the same symmetry cannot cross during an adiabatic
process and exhibit avoided level crossings. The point of
nearest approach between two such levels is known as
avoided level crossing. If the internuclear distance varies,
the transition probability of a nucleon between two adia-
batic levels is strongly enhanced in the region of avoided
crossings. This promotion mechanism is generically enti-
tled the Landau–Zener effect. This effect was used since
1980 [34] in light heavy ion reactions to predict single–
particle excited states after collisions.

Adiabatically, for Ω=3/2, the level scheme presented
in Fig. 1 shows that the 1h9/2 level reaches the 1hH11/2

state, the 2f7/2 level reaches the 1hH9/2 state, the 1i13/2

level reaches the 2fH7/2 state and the 2f5/2 level reaches
the 1iH13/2 state of the 211Bi daughter considered spheri-
cal. Our goal is to compute the occupation probabilities of
the unpaired proton in the three levels corresponding to
the ground state and the first two single–particle excited
state (2hH9/2, 2fH7/2 and 1iH13/2) in the final stage of the
disintegration process using the Landau–Zener promotion
mechanism. Two avoided crossings can participate to the
one–body excitations. To show that, the diabatic levels
emerging from 2f7/2, 1i13/2 and 2f5/2 are denoted with
ε1, ε2 and ε3, respectively. At the beginning the 2f7/2 is
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Fig. 1. Protonic level scheme for the
14C spontaneous emission from 225Ac
with respect to the normalized elon-
gation. The levels emerging from 1h 9

2
,

2f 7
2

and 1i 13
2

are plotted with thick

lines and that from 2f 5
2

with a dot-

ted line. a) Detailed part of the level
scheme where only the levels with
Ω=3/2 are plotted and the avoided
level crossings are numbered. b) Total
level scheme. At the beginning, the
behavior is similar to a Nilsson dia-
gram for prolate deformations

filled with a proton. During the decay, a first avoided cross-
ing which can excite the proton is localized at Rn ≈ 0.9
between the diabatic states ε1 and ε2. After the passage
through this region ε1 is assimilated to the adiabatic level
emerging from 1i13/2 and ε2 is assimilated to that emerg-
ing from 2f7/2. The second avoided crossing can be re-
marked at Rn ≈ 1.2 between the diabatic levels ε1 and ε3.
After the passage through this second crossing region, ε1
is assimilated to the adiabatic level emerging from 2f5/2

and ε3 is assimilated to the adiabatic level emerging from
1i13/2. Finally, ε1, ε2 and ε3 reach the final daughter or-
bitals 1iH13/2, 1hH9/2 and 2fH7/2, respectively.

From now on, the same treatment as in [21,22] is per-
formed. Assuming a three-state approximation by taking
into account the three levels emerging from 2f7/2, 1i13/2,
2f5/2, the wave function of the unpaired neutron can be
expanded [35,36] in a basis of three diabatic wave func-
tions φi(r, R) as

ψ(r, R) =
3∑
i=1

ci(t)φi(r, R) exp
[
− i
h̄

∫ t

0

εiidt
]
, (2)

where the matrix elements between the diabatic states φ
are abbreviated by
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εij = 〈φi | H | φj〉, (3)

H being the Hamiltonian of STCSM. Inserting ψ into the
time-dependent Schrödinger equation, the following cou-
pled equations are obtained [21]:

ċi =
1
ih̄
εij exp(iαij)cj +

1
ih̄
εik exp(iαik)ck,

i, j, k = 1, 2, 3, (4)

with

αij =
∫ t

0

(εii − εjj)dt/h̄. (5)

The initial conditions are c1(t = 0) = 1, c2(t = 0) = 0,
c3(t = 0) = 0. We need to know the values of εii = εi,
εij = εji, and the relative velocity Ṙ. The kinetic energy
available during the disintegration process is preserved
and variations of the relative velocity Ṙ are due essen-
tially to the modifications of the effective mass BR. The
inertia BR with respect to the elongation is computed [37,
38] in the Werner–Wheeler approximation. In general, the
so–called tensor of inertial coefficients Bij (inertial param-
eters) contains information about the mode in which the
nucleus reacts to the generalized forces acting on the nu-
clear shape. These generalized forces are depending on the
deformation energy [39]. If the variables which define the
shape of the effective nuclear surface are used also as col-
lective variables (shape parameters of the potential) this
tensor is also known as the tensor of effective mass pa-
rameters. The quantity BR being calculated in the frame
of the Werner–Wheeler method, its sense can be extended
as effective mass parameters. The consistency condition is
realised: the same shape for the macroscopic potential, for
the microscopic one and for the tensor of inertial coeffi-
cients.

The system (4) is evaluated numerically using the
Runge–Kutta formula. The three diabatic states are com-
puted using spline interpolations around the level cross-
ings and are denoted by ε1, ε2 and ε3. The interaction
matrix elements εij between these diabatic states are a
measure of differences between adiabatic and diabatic en-
ergies. A kinetic energy Ek = 70 keV is used because
it was determined previously [21,22] that it provides a
good fit for the ratio between experimental half-lives of
the two 223Ra parent nucleus decay modes experimentally
confirmed in the fine structure phenomenon of 14C emis-
sion. Asymptotically, the occupation probabilities values
pεi =| ci |2, i = 1, 2, 3, of the diabatic levels are pε1 =0.958,
pε2 = 4.1 × 10−2 and pε3 = 1.1 × 10−4. Consequently,
at the exit point from the potential barrier, the unpaired
neutron of the daughter has the probability pε1 to be in
the second excited state 1iH13/2, pε2 to be in the ground
state 1hH9/2 and the probability pε3 to be in the first ex-
cited state state 2fH7/2.

The second single particle excited state given theoreti-
cally by the single particle scheme is not found experimen-
tally in 211Bi. Nevertheless, it can be interpreted that this
formalism indicates that reaching the 1iH13/2 orbital, the
unpaired proton carries during the scission process enough

energy (of the order of 1.3 MeV) to excite the daughter
in higher energetic states (other experimental levels are
found for 0.7663 MeV, 0.832 MeV and 6 values between
0.951 and 1.27 MeV) or even to emit the unpaired proton.
In this last case, a simultaneous emission of the unpaired
proton with the cluster decay is predicted. This is the way
in that the second excited state must be understand.

The partial half–life of the channel i, is obtained with
the equation

T i1/2 =
hln2

2EvSi
exp(Ki), (6)

where Ev is the zero-point vibration energy (ZPE), Si
is the spectroscopic amplitude which has the same in-
terpretation as pεi and Ki is the action integral deter-
mined for the channel i. As explained in [20], the spec-
troscopic amplitude is the probability for the mother nu-
cleus to be found in a state of the type of cluster and
daughter nucleus. Considering that the resonance or de-
caying state are formally similar to a bound state, the
spectroscopic amplitude can be calculated classically as
the projection of the mother state onto the product of
states of the two fragments. A quantity which has the
same interpretation as the spectroscopic amplitude is ob-
tained using the Landau–Zener effect, but its calculation
is effected by taking into account dynamical effects dur-
ing the disintegration process. In the case of even-even
nuclei, S=1. The action integral is calculated by using the
semi-classical Wentzel-Kramers-Brillouin (WKB) approx-
imation being computed for a given energy which connects
one point in the ground state and the exit point of the bar-
rier [39]. This energy is determined in our case by the value
Q+E′v, where E′v is a fraction of the ZPE lost to surpass
the barrier. The excitations of the system in the avoided
crossing regions are translated in an increase of the po-
tential barrier, E′v being unmodified. The phenomenologic
deformation energy E0

d is computed in the framework of
the Yukawa-plus-exponential model [40] extended for bi-
nary systems with different charge densities including phe-
nomenological shell corrections [41] and diffuseness cor-
rection to Coulomb potential [38] as in the numerical su-
perasymmetric fission model. E′v + Ek = Ev = 0.44 MeV
according with [41]. It is assumed that the deformation
energy E0

d is a good approximation to the adiabatic po-
tential energy surface of even–even nuclei. So, it can be
considered that Ed = E0

d for ground state. The Q–values
are obtained from [42]. The specialization energy for 225Ac
is added to the potential barrier in the same manner as
in Refs [21,22]. For an even-odd nucleus, if the system is
not excited, the specialization energy [43] explains the en-
ergy excess of the nucleus during the decay with respect
to a given spin of the unpaired nucleon. The specialization
energy is defined as the excess of the energy of a nucleus
having an unpaired nucleon characterized by a given spin–
parity versus the energy of the same nucleus, at the same
deformation, with the nucleon in a same spin–parity state
of lowest energy. It is precised in [43] that this difference
in energies may be considered to measure the amount by
which the fission barrier for an odd nucleus exceeds that
for a neighboring even–even nucleus. In our calculations,
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the parity content of given single–particle state change
along the deformation path due to the mass–asymmetry.
Therefore, the energy excess is related only to nucleons
with same spin Ω and this specialization energy is trans-
lated in an increase of the potential barrier during the
disintegration process in the avoided crossing regions. The
action integral is approximated by the formula:

Ki =
2
h̄

∫ Rie

Rg.s.
i

[2BR(R)(Eid(R)−Qg.s. − E′v)]1/2dR (7)

where Rg.s.
i is the first turning point, Rie is the second

turning point (depending on the specialization energy),
Eid is the deformation energy obtained by adding to E0

d
the specialization energy.

Only a three level approximation is sufficient to treat
this decay mode if the unpaired proton is initially consid-
ered to lie in the level with spin Ω=3/2 emerging from
2f7/2 at a non-zero deformation of the 225Ac parent. In
this case, the level emerging from 1i7/2 is empty and the
avoided crossing with the level emerging from 2f5/2 pro-
duced at Rn ≈ 0.5 can not produce single–particle tran-
sitions. The involved level with greatest energy emerging
from 2f5/2 can be filled only at the second avoided cross-
ing located at Rn ≈ 1.2, afterwards, this level reaches
smoothly its final state 1iH13/2 without existence of condi-
tions for another single–particle transition.

3 Results and discussion

With the assumption that the ZPE is the energy avail-
able during the disintegration, its value can be divided in
two parts, one part (E′v) is lost as a potential energy in
the attempt to surpass the potential barrier and the rest
(Ek) participates as a kinetic energy of the whole system.
The two turning points of the potential barrier exhibit
the same energy, so, the fraction of the ZPE given by the
kinetic energy keeps a constant value and intrinsic excita-
tions are translated in the increase of the potential barrier.
Two opposite effects are competitive when the kinetic en-
ergy is increased: the asymptotic occupation probability
of the excited states is enhanced but, in the same time,
the penetrability is diminished because the fraction of the
ZPE used to surpass the barrier is decreased. This diminu-
tion of the penetrability is more marked for the excited
channel since the potential barrier is larger than that of
the ground state.

Finaly, the calculation show that the probability to
have the unpaired proton in the first excited state of the
daughter 211Bi is hindered. The ratio between the half-
lives of the channel with the daughter in the ground state
to that in the first excited state being almost 4. ×10−4.
It is possible to have a second excited state or proton
emission during the decay with a branching ratio of 0.042
relative to the ground state. The second single particle
excited state must be understood in the sense that the
proton carries enough energy to excite superior levels of

Fig. 2. Theoretical and experimental values of the total and
partial half–lives relative to cluster decay in a Geiger–Nutall
plot. The experimental values of the total half–lives for the 14C
emission from 222Ra,224Ra,226Ra [22], 225Ac [21] and the par-
tial values of the half–lives from 223Ra [8] are displayed with
empty circles. The theoretical values for the 14C emission from
Ra [19] are plotted with empty squares while the theoretical
values concerning the 225Ac parent are represented with empty
triangles. A filled square and a filled triangle refer to the the-
oretical values obtained without taking into consideration the
Landau–Zener effect. The Q–values are obtained from [39]

the nucleus or for proton emission. These results are al-
most independent of the model used to compute the par-
tial half–lives and are essentially determined by mean of
the Landau–Zener promotion mechanism.

Both theoretical and experimental Geiger–Nuttal plots
for both reactions 223Ra →14C + 209Pb and 225Ac →14C
+ 211Bi are represented in Fig. 2. The preexponential fac-
tor hln(2)/2Ev in the Rel. (6) used to compute the half–
lives presented in this figure is obtained for all the the-
oretical results to be given by the ratio between the ex-
perimental half–life for the 14C decay of 224Ra and the
Gamow factor of the same reaction.

All theoretical values of the Gamow factors are de-
termined in the frame of the numerical superasymmet-
ric fission model, accounting phenomenological shell ef-
fects by adjusting the theoretical Q–value of the decay
by a fitting procedure as in [41] in order to reproduce
the experimental one. Therefore, the total half–life of the
225Ac is well reproduced when the Landau–Zener effect is
not accounted and the transitions are considered to be
produced only from the ground state of the parent to
the ground state of the daughter (the filled triangle in
Fig. 2). If the Landau–Zener is introduced, the different
channels (referred as transitions on different excited states
of the daughter) are characterized by different probabili-
ties (already denoted with pεi) and greater values of the
Gamow factor than that of the ground state. The simul-
taneous variations of these two ingredients are translated
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in a higher theoretical total half–life

T total
1/2 =

1∑
i

1
T i1/2

(8)

than that given by the filled triangle in Fig. 2. Therefore,
to estimate realistic values of the hindrance factors and
of the partial half–lifes we use the Rel. (8) where T total

1/2

is replaced with the experimental value, having in mind
that the ratios between the different partial half–lives are
obtained from the spectroscopic factors determined before
and their respective penetrabilities. This renormalization
was not used in the calculations effected for 14C decay of
223Ra because the theoretical value of the total half–life
without Landau–Zener effect (filled square in Fig. 2) was
much smaller than the experimental one. The hypothet-
ical half–lives deduced from the Geiger–Nuttal plot are
obtained from the straight line between the experimental
half–lives of 224Ra and 226Ra and have the following val-
ues in seconds: 1.88 ×1016, 1.50 ×1017 and 1.12 ×1019,
for the ground state and the first two successive excited
states, respectively. For the same sequence, the theoretical
deduced half–lives in seconds are: 1.38 ×1017, 3.45 ×1020

and 3.29 ×1018. So, the hindrance factor for the ground
state is 7.34, for the first excited state is 2306 and for the
second excited state (in the sense that this second single
particle excited state contains enough energy to excite the
superior levels or to emit a proton as remarked in Sect. 2)
is 0.3.

This process was also analyzed quantitatively in [44]
where the half–life is determined with a preformation
probability deduced from a straight line approximation.
Comparison with the experimental total half–life for this
decay leads to consider that the ground state to ground
state transitions are favored. Also, with the analytical
superasymmetric fission model it was deduced that the
transitions to the ground state of the daughter are not
hindered [18]. These predictions are in qualitative agree-
ment with the calculations presented in this paper. Quan-
titatively, for example, the calculations presented in [16]
show that the intensity to the ground state is only 5 times
greater than that to the first excited state of the daughter.
Here, structure ingredients are not included, the half–lives
of different channels being mainly obtained by adjusting
the Q–value. None of these predictions expect a low hin-
drance factor for higher excited states.

This formalism can be considered as a fine structure
in the rate of cluster decay. Some simple arguments in
analogy with the results obtained in [45,46] can be given
in favor of the semi–classical approximation presented in
this paper. In these references, at the initial moment a
metastable state of the parent is generated and a wave
function ”begins” to advance through the potential bar-
rier. The probability ρ to find the system beyond a con-
figuration defined by a elongation r of the system and the
alpha decay rate λ are time–dependent parameters. Their
calculations show that after a short period of time (the
transient time) the alpha decay rate reaches a mean value
characterized, however, by small oscillations around this
mean value, the quasi–stationary regime being obtained.

The period of these small oscillations is almost constant in
this quasi–stationary regime. Important is that this mean
quasi–stationary value of the decay rate is almost equal
to the decay rate obtained from the classical penetrability
theorem, that means the value used in the present work
to define the half–lives. The small oscillations around the
mean value determine the tunneling time, that means, the
time lost by the maximum of these oscillations to arrive
from the first turning point to the second one. This value
is fitted reasonably in the calculations presented in this
paper: for alpha decay, the time of tunneling given in the
above references is of the order of (10−21–10−22) s while in
this work a tunneling time of the order of 10−20 s can be
deduced for cluster decay. Further, the quasi–stationary
regime can be approximated by the classical Gamow pic-
ture. So, if the Gamow description is a good approxima-
tion of the time dependent behavior, there are no reasons
to not introduce the tunneling time in the semi–classical
formalism.

Apart the work of Dumitrescu [13], the other models
do no take into consideration the residuals effects. Even
in the work of Dumitrescu some approximations were in-
evitables because it is not possible to handle accurately the
very complicated formulae generated by accounting resid-
ual effects in the R–matrix formalism. Therefore, he used
only a diagonal interaction and one dominant term in the
spectroscopic amplitudes, the real effects being partially
lost. All the other articles used very crude approximations,
and apart the simple interpretations based on overlap cal-
culations between orbitals, even the simple single–particle
structure is neglected. The description presented in this
work accounts for single–particle effects and the dynamic
of the process.

The fine structure phenomenon is explained appeal-
ing essentially to two ingredients: the Landau–Zener ef-
fect and the specialization energy. Both of them produc-
ing opposite effects which weaker the ratio between the
partial half–life of the cluster decay to the ground state
and that of the first excited states. When the kinetic en-
ergy is increased, the excitations on superior levels due
to Landau–Zener effect are enhanced while the penetra-
bilities are decreased accordingly, by increasing the bar-
rier. This treatment also provides a different way to attack
the fine structure phenomenon by accounting dynamically
single–particle energetic trends during the process.

I thank Professor M. Hussonnois for illuminating discussions.
This work was partially supported by a Romanian Academy
Grant (75/98).
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